Co e T O T e

AD-787 035

PRCGRESS REFORT ON PROGRAM-
UNDERSTANDING SYSTEMS

C. Cordell Green, et al

Stanford University

Prepared for:

Advanced Research Projects Agency

August 1974

DISTRIBUTED BY.

Eonal Technical Infoation Service
U. S. DEPARTMENT GF COMMERCE
5285 Port Royal Road, Springfiel” Va. 22151

1 |
i i

o e Rl s s bl R i

N3 S il s DRI v, 1l

Y)

k
B
M

]

A

=
%

3
4
i
'
3

——y

e
o

P BT

 go——

[P

HD 787035

STANFORD ARTIFICIATL INTELLIGENCE LABORATORY WGUST 177k
MEMO AIM-2L0

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-Th-lkbh

PROGRESS REFORT ON PROGRAM-UNDERSTANDING SYSTEMS

by
C. Cordell Green, Richard J. Waldinger,
David R. Barstow, Robert Elschlager, Douglas B. Lenat,

Brian P. McCune, David E. Shaw, and Louis I. Steinberg

Abstract This progress report covers the first year and one half of

work by our automatic-programming research group at the Stanford Artificial
Intelligence Laboratory. Major emphasis has been placed on methods of
program specification, codification of programmiag knowledge, and
implementation of pilot systems for progrem writing and understanding.

List processing has been used as the general problem demain for this work.

This research was supported in part .y the Advenced Research Projects
Agency of the Office of the Secretary of Defense under contract

DAHC 15-73-C-0435, in vart by the Naiional Science Foundation through
an NSF Graduate Fellowship, and in pari by the State of California
through a California State Fellowship. Richard J. Waldinger was
affiliated with the Artificial Intelligerce Center of the Stonford
Research Institute during the period of this research.

The views and conclusions in this documen' are those of the authors and
should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Advanced Research Projecle
Agency or the US Government.

Reproduced in the USA. Available from the Ha* ional Technical Information
Service, Springfield, Virginia 22151.

(4
e

PR

an

PR ik g el St

e

SN ok M

R R e L e s LR) G e L TS

lﬁwb
ARt

i bt .
; '
7.
- Ly <
i ey S RO o
) o i oot) o S wX e L G P
'+ AR L S g o AR I T]
4 B
i i)
et DO B e
- A2
(3
R

o

~ u}
. v
4

o

]
ey |

W orown!
el

JW‘
I

§

’hvdhv-'-
T

ACKNOWLEDGMENTS

The authors gratefui., zcknowledge the helprful criticisms of
drafts of this repori given by D. Bruce Anderson, Avra J. Coha, and
C. A. R. Hoare. Compute: %im: for much of the research reported herein
was made available by the Artificisl Intelligence “enter of the Stanford
Research Institute and the Information Sciences Institute of the

University of Southern California.

ii

B =

.

r——

b

M+

[%

i3

1.

TABLE OF CONTENTS

Section

Introduction . . ¢ « ¢ & & . v . 0 v v e e .

1.l Goals . v v v v v e e e e e e e e e e .
1.2 Progress . . . « ¢« ¢ v 4 o 4 . o s
1.3 Organization of the Report

Methods of Program Specification

2.1 Example Input-output Peirs o v e
2.2 Program TraCes . . o « « o o o o o o o o o

2.5 Generic Examples . . . « + « « o + . . . e e

2.4 Generic Traces e e e e

2.5 Graphical Descriptions
2.6 Conceptual Descriptions . . « . + « ¢« « . . .
2.7 Natural-language Descriptions

2.8 User-machine Dialog . « + « « ¢ « v « . . .

2.9 Information Necessary to Complete the

Specification of a Program

2.10 A Comparative Example « « +. . .

Codification of Programming Knowledge

Implementation of Program-understanding Systems

4.1 Schema Instantiation to Fit Example Input-output

Fairs . . v o v s e e e e e e e e e e e

h.b.1 1Interchange of Elements

h ' kog ;’}-el&ﬂe!‘lt SOI‘t L L T T R Y Y

)P 0’* . 5 Integer Square RQOt . . » 1]

iii

L.2 Sequenze-extrapolatecr Writer
L.3 Fllipsis Translator « « « & o .+ . .
L.k Our Simplest Prograr-understanding Projram

ooooo

. e e s

LI Y TS

o

o

AL o BN @ o

10

il el

S

T P Y e

f scm./(‘_‘““,,;, - ——
Unclassified -
SECURI?S cffsssmcf'non OF THIS PAGE (When Daia Entered) é.D 73 7 0 55-

. 4 2 READ INSTRUCTIONS
REPORT DOCUNENTATION PAGE pEriEAD IETRUCTIONS
V. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
STAN-CS-Th="lk
4, TITLE (and Subtitic) i S. TYPE OF REPORT & PERIOD COVERED

PROGRESS REPORT ON PROGRAM-UNDERSTANDING SYSTEMS technical, Aug. 1974

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 5. CONTRACT OR GRANT NUMBER(s)
C.C. Green, R. J, Waldinger, D, R. Barstow,
R. Elschlager, D. B, Lenat, B, P, McCune, DAHC 15-73-C-0L435
D, E. Shaw and L - —
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. x:gg';AwosﬂLKzasluT.NZRM(‘;’EERS .
Stanford University
Computer Science Dept. ARPA Order No. 2494
H.ﬁ CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
) ARPA/IPT Attn: Stephen D. Crocker August 197k
1400 Wilson Blvd., Arlington, Va. 22209 13. NUMBER OF PAGES
> 53
14, MONITORING AGENCY NA'TE‘ ADDRESS(I! ditferent from Controlling Oftics) 15. SECURITY CLASS. (of thia report}
ONR Representative: Philip Surra
Durand Aeronautics Bldg., R.. 165 Unclassified
Stanford University 18e. DECLASSIFICATION/ DOWNGRADING
Stanford, California 94305 | cenEouLE

b st e
16 DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination.

|7‘. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if nocesancy and identify by block number)

Fep-cduced by)
NATIONAL TECHNICAL
INFORMAGION SFRVICE

U S Onpuortment of Camrmarce
Sprinpfetd VA 22151

20. ABSTRACT (Continue on reverse side If necessary and identify by block number) _T
This progress report covers the first year and one half of work by our
automatic-programming resesrch group at the Stanford Artificlal Intelligence
Laboratory. MWajor emphasis has been placed on methods of program

specification, codification of programming knowledge, and implementation

of pilot systems for program writing and understanding., List processing

has been used as the general problem domain for this work.

DD, 5%%s 1473 coimion oF 1 NOV 65 is cesoLETE i. Unelagsiried

SECURITY CLASSIFICATION OF THIS PAGZ (When Deta Entezed)

i

. L.5 ©Examples Program . « « « « « o « « o« o o « « o« « o+ o« 3k
L.6 Synthesis of Lsrge Inductive-inference Programs . . . 38 f’
l 437 Sortingo .. . =
! Bibliography « « « + « v o . . . 11
L
e
' iv
b}

1. ,'TRODUCTION

1.1 Goals

The object of this —reseerch is to pursue the question of whether it
is vpossible to develop a intelligent computer system that both understands
and writes programs. The research includes high-level methods of specifying
programs, codification of programming knowledge, and implementation of
working program-writing systems. The domain of programming knowledge
ranges from the fundamentals of programming through list processing to
simple searching, sorting, and inductive-inference programs. Much of this
knowledge is more-or-less pure programming knowledge, along with such
domain-dependent knowledge as is necessary. A major emphasis is the
codification of the considerable body of list-processing and fundamental
prograrming knowledge. Tn the implementation aspect of our research, an
eventual target system is expected to have a deep understanding of
programming as demonstrated by its program-writing ability, its line of
reasoning in creating a program, and its ow.. discussion of why it made

each choice and what factors were involvern.

1.2 Progress

One of our earliest efforts was an exploration of more "human" methods
of py.sgram specification, such as example input-output pairs, program
traces, and peneric examples. In the area of codification of programming
knowledge, we have Qevelcped snts of ruler for program synthesis that
cover low-level 1ist and register operafions, several types of penerate
and process paradigms, and simple searching and sorting programs. We have

zmplemented 7 different propgrams that do all or part of the job of program

1

0 Sy

|

o atessdsahdan o aditais

. .) i e) A e " i i
v
' . o 3 T SRS
\ Lo e . Ll g X . : . A - - .-
~ o i g Mo o g el ST TR P 3 e . . .

synthesis. The more recent programs have been modsrately successful. 1In
particular, they can (1) write list-transformation pr.grams, given
avample input-output pairs; (2) write low-level list- and register-

menipulation progrems; (3) write 3 sorting and permutation programs;

and (4) write a concept-formation program.

1.3 Organization of the Report

The reader should note that material in this progress report is
presented roughly chronologically and that some of our false starts have
been included for historical completeness. Consequent.iy, our later (and
hopefully more successful) work is presented towards the end of the paper.
Some readers might wish to scan the first parts and focus on Sections 4.4
through 4.7.

Section 2 of this report represents our initial explorations into
declarative methods for specifying procedures. These methods include both
individual and geneiic examples of input-output pairs to which the program
being specified must conform; traces of the input(s), output, and perhaps
intermediate valnes throughout the execution of the program; high-level
programming operations and concepts expressed in English words and phrases;
and combinations of these. As a result of the conciseness of such program
descriptions, they are often incomplete or ambigucus. Some of the methods
of Section 2 are utilized in the runuing systems discussed in Section &.

Section 3 is a brief discussion of what we view as one of the most
important aspects of research in automatic programming: the codification
of programming knovwledge so that it can be used by & system which understands
end writes programs. Concrete examgles of such knowledpe are siven in

Section b for some of the sysiems currently implemented.

-
“

TR

Immmnmmm»mnmmm,"':xmmmmmnmmwmq.mmmwmw S Y A -y . I

B

Section 4 embodies the history of actual program-understanding
systems which have been implemented by our group over the past year and
one half. These systems span a wide range of input-specification types,
built-in programming and task-domain knowledge, and target-program
complexity, but they all have the programming domain of list processing
in common. Although the systems are discussed in chronological crder
for the seke of continuity, the reader should note that our most recent

and continuing efforts involve the final % systems [see Sections 4.5-Lk.7].

-

A AR B . sl 1225
) . . . § " X (g o i

PRl

I
1
§ ;

2. METHODS OF PROGRAM SPECIFICATION

One of our goals is to find better ways for people to specify programs.
A central question is whether or not there exist any methods or languages
that are better than those that currently exist. It is possible that,
say, ALGOL is the best language for specifying a particular algorithm.
However, it seems that for certain programs we can find new descriptions
that are easier for people to use. Certainly, very good special-purpose
languages can be designed for particular application areas.

We will present a few methods for specifying list-processing programs.
It is not yet clear which methods are suited to which classes of programs.
Some methods considered so far are examlned below. Most of these have
evolved from discussions within our group. MeCune has contributed the
most recent efforts at analyzing and cataloging them.

In general, our target user is a person familiar with programming and
the subject domain of the desired progrom, but not necessarily with the

details of that program or the language in which it is to be implemented.

2.1 Example Input-output Pairs

Grammatical inference and the inference of automata from ordered pairs
representing example input-output behavior have been investigated
(3,4,7,12,17]. Example input-output pairs can similarly be used to
describe low-level list-transformati-n algerithms [1,1h].

Consider the program that “flattens” a List. An example of its

hehavior is es follows:

Wiy

it

v P P R T

input oubput
(A (BC (D) E)) ~>» (ABC D E)

This example pair is quite simple to write and 1o most people specifies

the desired effect of the program, but not the detailed operation. DNote

that if we add the phrase "remove inner parentheses" to the input-output pair
description, the intent is even clearer Of course, we still don't

know whether to create a new list or modify the input list unless &iis,

too, is specified.

Another list transformation that is easily specified by example is

ingut output
(ABC D)= ((AB)AC)AD)(C)BD)C D))

which describes the generation of all 2-element combinations from a list.

A simple observation is that several I/0 pairs may be required to
specify a program (actual.; a ciass of equivalent programs) unambiguously.
One disadvantage of this method is that the program inferred by the system
may not be the intended program. Also, examples have to be carefully
chosen. Hopefully the program-writing progrem will have some model of
human preferences and will not infer, say, the function having the consiant
output (A BC D E) from the flatten example given above. In cases
where it is difficult to disambiguate the intended program using only examples,
other information sources could be used. These include programming context
and simple descriptors like "a recursive function, not merely table loock-up".
The program-writing program should verify with the user that its choice
of program is what the user intended. One way to do this is to automatically
penerate for the user a new I/O pair that disambiguates among thez major

candidates.

_—

In any program-~specification method that requires some inference on
the part of the computer, there will be a chance that the computer will
synthesize the wrong progran. This lack of control is especially upsetting
to good programmers. However, high-level specifications are invariably
inexact, which leads to the need for inference to £ill in details. More

research on this problem area is required, but any solution would seem to

require & high degree of 2-way dialog between the user ana the system.

2,2 Program Traces

Some work has been done on the inference of programs from traces [2].

Yoo e e e g T e o
. - - .

This method is more complete than example I/0 pairs in that it tends to

describe the algorithm used to compute the output, as well as the input-

output relation. Thus the pair

)

s A . -
[T~
.

input output
31h2)=—m (123}

et

—;-' specifies a sort. But the trace oX the input and output
il
3 - input output
i
e initialily: (3142 ()
- next: (1L 2) (3)
- next: (2) (L3 k)
finally: @] (L23h

implies an insertion-sort algorithm, with details omitted.

We would like to emphasize a new aspect of program inference from

‘traces, namely, the utilizatiop of several linowledge sources to wr

s
a1
T S - - o Vra A

e the
program. These sources include the subject domain for which the program

is written, 2 knowledge of what the common operations are, and other

4 P Gy Beed el

"
v

T e ——. AR AITT——

=

—

it B

o
. |

MM

-]

4

Prr——
[——

specifications that are given for the program. The user could supply
further informmation by annotating the traces tc provide disambiguation
or further specification, as is discussed in Section 2.9. An example of
adaitional specification of the sort program above might be the word

"recursive".

2.3 Generic Examples

Generic examples lle somevhere between example I/ 0O pairs and formail
predicate-calculus I/O specifications [13,3%2] in explicitness. The
ellipsis notatlon is used to specify an indefinite number of elements.

For example, the specification

input output

(.cl Xy X3 oo xn) —_— (xn X1 ¥pap ot xl)
gives the reverse function. The alternate function may be specified by

input output
(xl Xy X3 X) X5 ver) ———) (xl X5 Xg ved)

This notation is, of course, ambiguous, and a verification phase would

have to coniirm the hypothesized program.

2.k Generic Traces

Similarly, the ellipzis notation can be used in a trace. As an
example, here is a gevieric trace which cpecifies the combinations of

elements of a set taken 2 at a time:

il

car(input) cdr(input) output

Xy (xe Xz X) o) ((xl x2) (x:L x5) (xl xh) ced)
. X, (x3 X), e) ((xy x2) (x; xj) (%, x),) -+ (%, xs) (25 %) .-2)
&
- 2.5 Graphical Descriptions
1 Pictures of input and cutput are obviously well suited for depicting
- simple list transformations in which the structures are difficult to describe
= in linear strings, yet easy to describe in 2 dimensions [19]. We have not
] investigated any of these methods.
S 2.6 Conceptual Descriptions
B High-level program description is, of course, the most convenient
U specification technique if the right high-level primitives are available.
H In the extreme case we would just give the name (or number) of the desired i
program. More interesting cases for automatic-programming studies are 3
H those in which there is same distance from the primitives to the program :
- description.
ii For the domain being considered (list transformations), nice lonceptual 3
»e descriptors (primitives) include "element conserving", "order preserving, ;
- "represents a set", "represents a tree", "represents a graph", "permutation”,

"table look-up", etc. These can be embedded in either inherently ambipuous
or unanbipuous languages (ranging from versions o English to unambipguous ~e

high-level, but conventional, programming lanpguages) and can either partially

oy completely specify the program. We would like to emphasize partial

3

4) pej

Ty,

descriptions, ambiguous languages, and primitives that are not quite
high-level enough to make the task too easy for the system. By combining

several ambiguous partial descriptions with knowledpe of the programming

o R

domain, a system may be able to decipher descriptions that humans can

easily produce. (Conventional programming languages that are completely

g

descriptive and unambipuous, but lacking primitives of a high enough level, 3

are still of interest.)

2.7 Natural-language Descriptions i

b

As used by documentors and describers of algorithms [19], natural
(English) language mixed with mathematical and programming jargon can be

an effective method for communicating an algorithm. Good English-like

program descriptions can be easily understood by humans, although again

it's not clear under what circumstances they are the easiest descriptions i

[
-

to generate. English descriptions can, of course, describe input-output 3
relations or algorithms, be partial or complete, high-level or low-level,
interactive or not, etc. Here is an example of a partial algorithm :
specification [20]:

An exchange sort. If two items are found to be out of

order, they are interchanged. .kis process is repeated
until no more exchanges are necessary.

T AR PyT N
"

We intend to examine the issues of when English is a useful adjunct

in program description and how a programming system might deal with it.

Elschlager is studying natural-language descriptions of programs in order

to develop an epproprigte internal representation for them. From this has

come a representation which is primarily relational, but also has

qualification and quantification primitives. Possible inputs into this
system might be either a limited subset of English or a more rigidly
structured "parenthesized" English. Future work includes relating this

internal representation of a program to the programming concepts and

data structures it will use.

2.8 User-machine Dialog

A simple and useful vehicle for embedding the various methods of
program specificatiocn is conversational interaction or dialog between
the user and the automatic-programming system. Such a style was used by
Floyd [10] in his suggestion for a system aimed at interactive program

verification and synthesis. With such a system there is a need for a

I

large amount of programming knowledge of both a damain-specific and

A,

generel nature. The system would draw on this knowledge in order to

understand the user's remarks and pose meaningful questions.

mmms;mmzsmmmmm-ll

One could imagine a conversation beginning with the user's specification

Py) By

of the general program desired and proceeding in a basically top-down i
manner. As the system needed more precise information, it would ask for

it. Presumebly the user could irdicate a preference for a particular

programming decision (e.g., choice of data representation) or possibly a

lack of preference, in which case the system would make its own reasonable

choice. A variety of methods of specification (e.g., examples, traces, :

formal specifications, etec.) might play a role in such a conversation.
This yields a varadigm similar 4o that of structured programming [£], but
one in which the computer fills in the details.

A typical low-level dialop mipht proceed as follows (for readability

the dialop is mostly English):

10

I
I
I
|

" o m 3 s P S
, L ST il 7 kil gt

L g .t C e A . i

S Gl e e omm §
0 ' :

- . I
'
i "
K
L

ot S evusunt S ant |

b=

[L
[T

)

M
vm—

PP
e

&t

1

4 G o W4 ¥ {

USER: Please write mes a program which extracts
information from pairs in an input 1list.

MACHINE: What will the input be?

USER: The input will consist of 2 parts: an
atom and a list of pairs.

MACHINE: What should the output be?

USER: A list of the other half of the pairs which
contain the input atom.

MACHINE: What do you mean by "the other half of
the pairs"?

USER: If the first element of one of the pairs
is the input atom, I want the second
element; if the second element is the
input atom, I want the first element.

MACHINE: What shall be done if one of the pairs
is (x x) , where x is the input atom?

USER: Then the output list should include =x .
MACHINE: OK, I think that's enough.
[pause]

MACHINE: Wait a minute. Does the order of the
elements in the output list matter?

USER: No, not at all.
MACHINE: Then T will simply use the order in which
the pairs occur in the input list, since
that is the easiest. In this case I could
overwrite the input 1list. Ehould I do that,
or would you rather that the list be preserved?
USER: FPreserve it,
(pause]

MACHINE: D- you want this written as a function
of the 2 input arjuments?

USER: Sure, call the function ¢ .

LR U T TR

"

oAl v

“r

T—— AR PR T W e i

ety &

i b i, e~ K1

M i

st i g ki

e

.

[T AN

MACHINE: How's this:

I(x, y) =~ if null(y) then nil else
if x = caar(y) then cons(cadar(y), f(.., edr(y)))
if x = cadar(y) then cons(caar(y), f£(x, cdr(y)))
£(x, cdr(y));

USER: Looks good to me.

®lo
=l

it
R I
o

The above dialog is at such a low level that it is ~ompletely dependent
unon the fact that LISP lists are being dealt with, thus requiring the user
to have some familiarity with LISP. Higher-level dialogsc of domain-specific
programs can be less representation dependent and can be carried cn in the

vocabulary of the particulsr problem domain.

2.9 Information ilecessary to Complete the Specification of a Program

.

In completing the specification of a program, we can imagine a

g

"checklist" that a program-writing system might have for each type of
program it can handle. It might work on completing its checklist by
inference from partial specifications, interactions with the user, context,
and default conditions. Such a checklist might include terminating
conditions, auxiliary functions, restrictions on input (e.g., whether a
list has constant or variable length), what data representations are
available, ete. Certainly a propram-understanding system needs to ask
many questions about the target program. (But not, "What's the first

instruction? Now, what'c the gecond? ...")

2,10 A Comparative FExample

il

Let's consider the specification of a simple progran as a vehicie for
diccussion of the merits of various methods of description. concider the

f=1lowing example ~f the ascociation search synthesized in Section 2.8:

" i o«

1z

et

ol T

(==

€

Smmih

input 1 input 2 output
B ((AB)(BC)(DE)...) —= (AC ...)

Note that we've incorporated the ellipsis notation of generic examples
into an exwnple input-output pair. Subjectively, this specificaticn seems
not as thorsugh as we might wish. Can input 1 be non-atomic? What if
(B B) occurs in input 2? What if an element of input 2 is atomic? Etc.

As the complexity of the trunsformation increases, example input-output

peirs begin to require more inference to determine the intended transformatizns.

One way out is to clarify the intended function by describing more elementary
relations between input and output e’ ements, namely, "The letters 4 and C
are in the output because they occur in the second input paired with B
(the first input)". If we allow a higher-level concept, it is even easier
to describe: "a commutative LISP assoc operation". This phrase
describes the function fairly clearly (to a LISP programmer). The added
description, "order preserving", explains why C follows A in the output,
but a reasonable program should assume (ard tect) order preservation in the
absence of other information. Obviously the ccnceptuel descriptions alone,
without the example, do not clearly detemmine the intended program.
Together they do a reasonable job.

As another more explicit technique, scCune and Lenat have sugpested
describing the lower-level relations for the above example graphically

as, say,

ot o o

oot I S

Elmm»’

i

| R -’
Wiy, w

Gl GEE D omE bl B el B

|

implies
A
memher
[implies
. l
I membezi J !
B, (AR BY 0B) —— (A ¢ ..)
' same 1
— — 4

same
I follows l
I implies

This scheme clarifies why each element of the output is where it is

)

.' [t
gE
7]

and from where in the input it came.
Of course, a partial or even complete, but precise description can

be given in predicate calculus {13,32]. Here is one possibility:

(¥ v, w, x, ¥y, 2) [input(x, y) A output(z) A atom(x)
A list(y) A list(z) A sublist(w, ¥) A length(w, 2)
A member(x, w) A memoer(v, w) A (x £ v Vv Yu[member{u, w) 5 u = v])]
= member(v, z)

(Y t, u, v, v, x, ¥, 2) [input(x, y) A output(z) A list(y)
A 1ist(z) A member(v, z) A member(w, z) A sublist(t, y)

A sublist(u, y) A member(v, t) A member(w, u)
A before(t, u, y)] = before{v, w, z)

(where before(t, u, y) means element & occurs before element u in

list y).

1k

L]
EH

et fed B BT BRI s BN BN AR

Wbt umm‘:
v

Bod

X

At this low level the above formal description, which may or may not

be correct, appears to be at least as difficult to write correctly as the

program itself. The program (in an imaginary version of Meta-LISP) is

merely

£(x, y) « if null(y) then nil else
if member(x, car(y)) then
appen..(delete(x, “car(y)), f(x, cdr(y))) else
£(x, edr(yj)}:

The low-level LISP prograr (which doesn't make use of the functions

member , append , and delete) is just

£(x, y) - if null(y) then nil else
if x = caar(y) then cons(cadar(y), f(x, cdr(y))) else
if x = cadar(y) then cons(caar(y), f£(x, cdr(y))) else
Tlx, car(y));

As another alternative, a program trace is a fair way to describe

the program:

input 1 car(input 2) output

B (A B) (A)

B (rC) (A C)

B (D E) (A C)
15

2
3

P T T

S

—

N . e

3. CODIFICATION OF PROGRAMMING KNOWLEDGE

The easy part of codifying programming knowledge is the now more-or-less
conventional formal specification of the semantics of each operation in
one's programming language (9, 15, 23]. The more interesting aspect is .
the concrete specification of high-level programming constructs (e.g., a

loop with an exit), and those programming methods that are used in the

process of designing a program, bub never appear explicitly in the program.
An example is the detailed specification of sufficient methods Zor performing
a ginerate-and-test operation on an implicit representation of a set.
Newell [2k] has presented a fairly high-level (non-programmeble) description
of 5 ¢:ommon artificiml-intelligence problem-solving methods, including
generuz5e and test, heuristic search, hill clir.bing, match, and induction.
Much o the wori in s:uructured programming [6] hes been aimed at
explicating such programming methodology, but has generally been at too
high a level for implementation, being aimed at human programmers. We
have begun to codify and embed this type of knowledge in 2 of our systems
[see Sections 4.6 and L4.7].

How big a body of knowledge are we interested in, and how much detail

is needed? Our .rude preliminary estimate is that something like a few

thousand "facts" (:sny convenient chunks of knowledge, such as production
rules, axioms, or goal statements) could enable a program to understand
simple list-yrocessing programs. We have generated a proposed set of

facte necessary for a program-understending system to understand very

)]

cimple insertion- and selection-sort programs. 100 to 20D facts seem 3
adenuate, without counting either the semantics of LISP or any officiency 4

or opbimization knowledge. Including these other knowledre scurces would

16

T TS T ST T e a————— —
=z v - e eeens e e e PRI ol AT R e i !

bring us to several hundred. Manna and Waldinger's experience [22] with

§ the domain of pattern matching indicates that about 75 facts are sufficient
§ to enable the construction of a unification algorithm (leaving out

e b

efficiency, programming-language semantics, and high-level program-

< construction concepts).

“ Such estimates, crude as they are, give us an idea of how smart a

%% program-understanding system might become in the next few years; that is,

o wz can expect a system to deeply understand a very small set of programs. !
gg Our plans are to finish the characterization of simple sorting and ;
g then to consider simple tree searching, tarle look-up, and set operations. 3

- At the same time we will increase our emphasis on the automatic selection i
E% of representations. These areas all involve more-oreless ''general

- programming knowledge and are not too domain specific. Our first more

;; ‘ domain-specific area under attack is that of concept-formation programs

- {18, 34], a class of inductive-inference programs that encompasses enough

&

general programming knowledge to be interesting for that reason. We are
currently defining a set of increasingly complex concept-formation
programs to pace our efforts. FUP5 [see Section L.6] indicates that there
are about 75 units of knowledge necessary to write a concept-formaticn
program, where each unit contains about a dozen facts.

It would be nice to know the size of the body that constitute. the
"core" of programming mnowledge. As yet, we can only guess. Finding the
kmowledge is still a more-or-less linear process; that is, to add a new
capability to an understandiniy system requires about as much time and

effort as it took to add the previous capability. We are beginning to

find some commonality in fhe utilization of previously codified xnowledge,

but it's too enrly yet to make any claims of great insight. However,
we do have a fal+ legree of faith that there is a subject-independent

core that we will slowly extract and refine.

)

W il

p—!\-.mwv’.

[
mm:

=

s 4

[L
Wi

Wb 'x:

St

Wiy

18

]
1
1

4. IMPLEMENTATION OF PROGRAM-UNDERSTANDING SYSTEMS

For the sake of historical completeness, we will discuus > early
Implementations that are of limited significance before discussing our
later, more successful systems. Perhaps the main conelusion to be drawn
from these is that small efforts seem inadequate for serious progress in

program-understanding systems. Good programming systems will be very

T g N et - e

large and complex and will take many man-years of work.

£ B B S BN 0N aw

4.1 Schema Instantiation to Fit Example Input-output Pairs

8

The first running system in our group was Lenat's FWl, which was

implemented in MLISP [30]. It takes as input several example input-output

list pairs and produces as output LISP programs. The idea is simple:
most elementary programs in the class of interest have 1 or 2 termination

conditions followed by a recursive call. The structure of such a program

»)

can be given by a few high-level schemata.

The system infers the number and type of arguments by examining the

ot o et ol i, o .

example input-output pairs. From the number of arguments either the

l-input schema or the 2-input schema is selected. The l-input schema is

£(x)
if fl(x) = ¢, then fe(x) else {line 1]
ir i‘j(x) = ¢, then fh(x) else [line 2]
£5(f5(£,(x)), Tg(£4(x))); [line 7]

e G W T

where fl through fg are functions and ¢y and ¢, are constants,

all to be determined later. Lines 1 and 2 correspond to termination

-
Ul

conditions, and line 5 corresponds %o a recursive call.

19

g e AN A A LG 10« 0

=)

4

g N i Lk
e oYy

,mu v

1

it
T

b Bum) P

I
I
1

The user is asked if the function is recursive. (If it is not,
line 3 is not used.) The default condition is to assume a recursive
funetion, but no attempt is made to guess that the function is recursive.
The automatic program writer next determines, again by asking, whether
there are 1 or 2 terminating conditions (i.e., line 1 only or both lines
1 and 2) and whether the user wants to suggest either the test or the
value for lines 1 or 2.

Whatever pieces are not supplied by the user are filled in by a
constrained search process that also fills in the functions in line 3.
The search proceeds as follows. First, an ordered set of candidates is
formed for each subfunction and constant. The user can give advice in the
form of suggested subfunctions that are likely to oceur. A second
information source is the type (atom, list, or number) of each argument.
These fuctors are combined, using a rating table containing the probability
of each known function appearing in a particular schema position, to yield
a final ordering. Then the candidate instances of the schema are generated
one by one, in accordance with the orderings of the subfuncticns.

Several tricks prune the search space. A function is not applied to
the wrong number or type of arguments. To check this the instuantiated

schema is run on the examples, and checking occurs at every step of

execubtion. Infinite recursions are detectzd and prevented. "Infinity"
is a parameter set in advance, usually to a number between 17 and 107. 3
The function being defined may only occur in line 3, the recursion step,
and its arguments in the recursive call cannost be the same arguments it

¥

receives in the original call. Some check should be made that the

i

srpumente are somehow moving toward the termination form, but actually any

20 i

H
i
=

.

PR e . i L P .

L ! 7 " "
" i i "

" Lo " o . o .

ks

wen GEE GBS BP0 D) e B B

AR

perceived change is allowed. Several special subfunctions, such as the

identity function and a

projection (or selection) function, are provided

to enable the desired program to be forced into one of the 2 given

procrustean beds.

The program is known to have generated at least 8 correct programs,

but run out of time on most other attempts. Among the programs Bl

wrote are

function name

function operation

sub2

last

reverse

Fibonacci

factorial

insert

sort

flatten

subfract 2 from the (numeric) argument
[from 2 examples: 2 -0 and T -5]

produce & l-element list containiung only
the last element of the input list
[from 2 examples: (A B) ——y (B) and
(ABCDE) —» (E)]

reverse a list [from 1 example:
(ABCDE) —— (EDCBA)]

the obvious [from 3 examples: 1 -1,
6 -8, and 7 -13]

the obvious [from 2 examples: 1 -1
and b4 - 24]

insert a number into its proper place in
an ordered list of numbers
[from 3 exarples: 2, (138) —a (12
2, (8) ~—— (28) ; and
Ty (L5) —= (L57) 1

sort a list of numbers, given insert as
a primitive funetion
[from 4 examples: ({2 3) — (2 3) ,
(32) — (23),
(L76L) ~—> (LHET) , and
(8125%5g) ——p»(123589)]

change a tree into a single-level list of
the atoms in the tree [from 1 example:
(A(BC(DE))) —> {(ABCDEF)]

This approach appeared to have limited potential, so no controlled

experiments were run.,

The main disadvantage was that the program had a

limited mod=1 of its task and little programming knowledge, so it

consequently engaped in larpe searches.

21

3 8) ;

W |

e W e

U

| L

ol Wl

A DI Ui .

k.2 Sequence-extrapolator Writer

This was an INTERLISP [31] program by Lenat. The question was
whether it is possible to write a highly specialized program writer that
produces programs for a given sub-area of inductive aference, in this
case sequence extrapolation [25, 29]. Other specialized program-writing
programs, like compilers and compiler-compilers, have been around for
a while. This new task turned out to te easy.

The program begins with a schema for a generalized sequence-
extrapolation program consisting of 5 subparts. The user describes, via
a dialog directed by a decision tree, which capabilities are to be
included for each subpart. (Not all choices are independent, however.)
The system then includes the appropriate pieces of program or data that
meet this description. For exarple, for the subpart of known sequences,
the user indicates which sequences should be immediately recognizable by
exact match.

Not much was learned, except that it is possible to write a nighly
specialized program writer for this domain. We can guess that it would be
easy to turn out specialist program writers for other simple, well-structured
domains. The system had little of the character of what we call an

understanding system.

k.3 Bllipsis Translator

This was a small study and INIERLISP progrem by Shaw designed to
translate a class of ambipuous generic examples into a list of candidate
unambiguous internal representations. Foxr example, the program translates

X, * % + ...+ %) into the 2 unambiguous interpretations
2 h n

2e

| g

Ol g Peed i B B

Psmnicy

- L s
i
. l
F l
A E

anoostt |

ol

m-’

SR b

fom—
Wiy

e

}

|
[

,‘f“

2 Xoy and z X 4
1<i<nf2 1<i<logyn 2

(although the 2 interprestations are not represented internally in a form
isomorphic to the above). The experimental program was not pushed, so it
never left the nearly debugged stage. However, there are a few comments
and observations we can make.

The notation seems to be useful, and the intent of the user is often
easy to guess by straightforward techniques. First, observe that finding
an interpretation reduces to sequence extrapolation on the indices of the
variables. Sequence-extrepolation technigues [25, 29], includirg successive
differences, successive quotients, and tests for common sequences, have
allowed the construction of relatively powerful sequence extrapolators
thet behave well and usually produce the desired interpretation, although
a non-cooperative user can often evoke a false interpretation. A more
serious problem is that of communicating to a cooperative user the
algorithm used to interpret the ellipsis notation and either verifying
that the first candidate is the intended interpretation or else finding
it by some interactive procedure.

The internal representation of the meaning does not appear to be a
problem, and good ones should fall out naturally when an ellipsis-
translating mechanism is incorporated into a larger program-understanding
system.

An ideal system should, of course, be forgiving. For example, it

should produce the same interpretation for the following 4 styles:

[§o)
A

vl ot il iy

i AR

1
L
1
11
L
1
1
1
i
I
1
1
1
1
1
I

T § == DT % T v 3 T A e

(xl+x2+x3+ + x)
(}'1+ Xo * Xyt oL :~:n)
(xl-fxg-x—\:: s+ x)
(xl+:~:2+~< X))

If the user provides a meaningfully subscripted last element, thal information

should be used. For example, in (:\:,‘3 X oo X n) the last element should

resolve the ambipuity in the sequence béginning 2, 4, Our ideal
system should also handle interleaved sequences (say, from different

sources), such as { %y Vp :c5 vy e .) ; specified intermediate elements,

such as (xl Xz eve Xpapq ...) ; deleted elements, perhaps represented

-~ (=3
as [Xy Ky oeee XL :<n) or in other ways; and various operators, such
as + K} = etc.

Waldinger has sugrested that a more powerful induction mechanism be
used to allow "formula extrapolation", e.g., to handle examples such as

(A, B, AA, AB, BA, BB, ...) . Such a mechanism could be of use in

specifying more complex, but frequently used, enumeration algorithms.
P &

Fusaocka (11l] has implemented an erbryonic formula extrapolator.

L.} Qur Simplest Propgram-understanding Program

The next program showed some rudimentary program-understanding behavior.
It dealt with simple list manipulation, assipnment operations, and
arithmetic. The 2 versions of the program were Lenat's PUPL and a
revised version, PIP2, by Steinberp. Both versions of RIP were written

in OLISP [2A] (the successor to QAk [27]) and INTERLISP.

The specification of the program to be written is basically a
formal input-output relation. The program is structured around QLISP
goal statements, which specify both the desired state and an "apply"

list of subprograms that may be able to achieve that state. A subprogram

may achieve the goal state directly or may decompose the goal into

subgoals and use goal statements to achieve these. We'll describe

i e WAL
.y

several of the tasks FUP accomplished, along with a description of the

stored facts used in each case.

o1 AT Ml B

4.k.1 Interchange of Elements This is a simple problem, £

similar to one solved by Simon's Heuristic Compiler [28]. The problem

statement is

initial state final state
contents(x) = a contents(x) = b 1
contents(y) = b contents(y) = a i

The initial state is assumed and the final state taken as the goal.

One of the programs on the apply list decomposes goals of the form a A 3

LR T T T

into the separate conjuncts and uses goal statements to attain first one,

then the other, in a more-or-less depth-first manner.

The program that handles the subgoal contents(x) =b sees that
contents(y) = b is true and so adds x -~y to the program being written. j

It also adds a comment " x previously contained a " at that point in the

program and updates the world model to say that contents(x) = b now holds.

Next, this same program is pgiven the subgoal contents(y) = a and finds
that a no longer existc, so it louks back in the program to find where a

was destroyed. It inds the comment " x previously contained a " and so

o gl A

patches the program to save a in a temporary variable before it is

destroyed. The program now looks like

begin
temp ~ x;

X -~y comment x previously contained a ;

Z
E:

Now a exists in temp ; so the program can achieve contents(y) = a by

wutio o

Yy ~ temp; comment ¥y previously contained b ; -
end;

;
b b

‘
Ja

b

il

The interesting issue here is whether to look ahead when a is
destroyed and predict that it will be needed again, or to go back and ¢

patch if the need is discovered. In this case patching was much easier

than predicting, largely because a comment was made in order to facilitate

any needed patching. (Far better programmers than PUP use many comments

for just that purpose.)

.l

L.4.2 3-element Sort This problem, sorting the contents of 3 cells

without using recursion or iteration, is non-trivial even for humans.
Experienced programmers can take several minutes and often come up with

incorrect programs. Formally, the problem is

initial state final state
contents(x) = a contents(x) < contents(y)
contents(y) = b contents(y) < contents(z)

contents(z) = ¢ contents of x, y, and z are, in

some order, a2, b, and ¢

No information is given about the ordering of a, b, and ¢ . The

third conjunct of the goal is presently handled by a kludge: nothing

-

26

e

ﬂ PUP knows how to do in achieving the rest of the goal changes this
] condition. Thus the goal PUP gets is actually just

contents(x) < contents(y) A contents(y) < contents(z)

] The basic method it to use case analysis, which is adequate (although
o a more clever approach is possible). The AND handler begins by decomposing
i-:‘—-; the main goal into its 2 subgoals. To achieve contents(x) < contents‘(y)
g}» - PUF knows to try 2 things:

EiL

{1} 1Is contents(x) < contents(y) already true? WP can
prnm that it i§ frue if it has been explicitly
shated or, since IUP knows that < is transitive,
: there iz a s:‘.mple transitivity chain such that
vontents(x) = X < B < ... <7y = contents(y) . In
eithor case, if ~“confents(x) < contents(y) is
alrsady true, AUT is done.

™ n,WWW
frommii
H S
,
‘

'

o

y———

(2) Is contenta{y) < contents(x) ? PUP can know this too
by having it explicitly stated or from a transitivity
chain. PUP also knows that —~(a <) 2B <u, so

ji that if it knows -—(contents(x) < contents(y)) , then

L it can deduce contents(yv) < contents(x) . In any

) case, if it decides contents(y) < contents(x) is

E% true, PUP interchanges x and y . To do this PUP
calls itself recursively, giving itself the interchange

problem discussed above in Section k.h.1. (Some future

] version of PUP should probably save some information

ﬂ about cach problem it solves, so that when it is given

) another similar problem it has an easier time. At

I present, however, PUP completely redoes the interchange.)

%§ After the interchange, FUP interchanges everything it

s knows about x and ¥y that depends on their contents. 1
That is, every fact that refers to the contents of x :
is modified to refer to the contents of y and vice

versa.

I Unfortunately, from the initial state none of the relevant ordering
l information is known, so the goal of contents(x) < contents(y) fails

to be achieved and the AID handler fails. (A smarter program might have
l firet noticed that no ordering information was jgiven about a, b,
' and ¢ , and not attempted either of the wbove steps.)

o7

b |

d oev K WM e O OB OB

gt

e S s S O |

4 S et bed bl Bl e

Failure of the AND handler causes the goal-statement mechanism to
try further programs on the apply list. One of these is a case-analycis
handler. This program picks one of the subgoals, say

contents(x) < contents(y) , and constructs a program of the form

if x <y then su'bprogr:a.m:L else subprcvgra.xra2 5

We note that the implicit assumption here that the < predicate is
computable should be made explicit. A smarter system might recognize
this program as a sort program and go on to produce a nice algorithm.

To find subprogram contents(x) < contents(y) is assumed and

l 2
the entire goal retried. Again the AND handler fails. (Although the
first subgoal succeeds since it is assumed, the second subgoal,
contents(y) < contents(z) , fails.) Again we enter the case-analysis
handler. This time since the first subgoal is true (by assumption), it
will not be picked; so the second subgoal is picked. By now, the first
part of the program being constructed looks like
if 7 < ¥ then

begin

Ly <z then
The entire pgoal is again retried. Since both subgoals are assumed, the
AID handler succeeds this time, and this case is done,

A point to note is that as each subgoal of the AND goal is achieved,
it is added to a list of "protected" facts. After each operation this
1ist is checked to see that none of the facts on it has been altered.
1T any have, an immediate abtempt is made to restore them. This can,

of eource, lead to infinite loops in which restoring one albters ansther,

e G Seel AN ONe S

L et B <ot [<

restoring that alters the first, ad infinitum. To prevent this, at
some arbitrary level of restoring within restoring, a cutoff is made
and failure reported. The impcortance of the process of restoring
protected facts will be shown shortly.

llow we do the else part of the innermost if. To do this the
assumption contents(y) < contents(z) is removed, and the assumption
—(contents(y) < contents{z)) is made. Then the whole goal is retried.
The first subgoal, still assumed, succeeds and is added to the protected
list. The second subgoal is tried, and since contents(z) < contents(y)
now holds, y and 2z are interchanged. A side effect of this
interchange is to modify the fact contents(x) < contents(y) to be
contents(x) < contents(z) .

After the interchange the protection list is checked, and because of
the interchange PUP no longer has the fact contents(x) < contents(y) .
So an attempt is made to restore that condition. As before, direct methods
fail, and the case-analysis handler is invoked. As before, a conditional
statement is added to the program, and the true and false branches are
written by assuming the truth and falsehood, respectively, of the
condition. The true case results in the null program, and the false
case results in an interchange. The attempt to restore
contents(x) < contents(y) succeeds, so the else part of the innermost
if succeeds and thus the whole jnnemmost if does too. The program now

looks like this (without comments):

i e OB 4

Al i

Qe r———

R P e

z
%
£
[3
L

:
I
1
1

g

o e

R B et |

| T |

"3

if x <y then
begin
if v < z then else
begin
temp, - ¥
Y=z
Z - templ;

if x <y then else

begin
temp2 - X3

X - Y3
y = temp,
end

R I

end
end
else
subprograme;

ks Wt O o

8 Wl

Finally sv.mprogrl;-.m2

specific to the process of writing subpragraml are removed, and

is written. All assumptions and deductions

—(contents(x) < contents(y)) 1is assumed. An interchange is needed to
establish the first subgoal, but otherwise the process is similar to that

of writing subprogra.ml . The final program is

[l GO PR L

|

) W"‘"

Ly

F i

if

L.k.3

should find

synthesize or verify such a program.

x <y then

begin
if y < z then else

T begin
temp, -~ y;
Yy -z

z - templ;

:

if x <y then else
begin
temp, - X;
2
xX-y
y « temp,
end

if y <z then else
begin
temp, - y;
y =z
z - temph;
if x <y then else
begin

'cemp5 - X3

X -Y;
¥y - temp5

end
end

Integer Square Root

L/xJ , the floor of the square root of input x .

21

task was chosen to coincide with Manna's tutorial on automatic

In this example the desired program

This

programming [21], which compared the abilities of existing systems to

WP's performance was gained by

e ol il

i

sacrificing formal methods -- and the associated formal guarantees. :
PUP has just the right knowledge about numeric functions, number

systems, ordering, maxima and minima, searching, and the real square-voot

function to make the problem interesting yet doable. For example, FUP

does not lmow any program which directly compu:es the square root of x .

However, it does know how to test if an input is equal to the square root

of x , by comparing the square of the input to x . And RUP does have a

program to compute the square of a number: multiply it by itself.

§ Let us investigate the dialog now. The user asks for the integer
i: square root of some number, say isqrt(82) . Since PUP doesn't recognize
gg the function isqrt , it assumes the user either made a typographical
- error or wants PUP to write a new function. The user settles that
: §§ question in fevor of the latter alternative, and PUP notices that there
" is 1 numeric argument. The knowledge of numeric functions is sufficient
* to realize that the domain and range of the function should be pinpointed
% if possible. The user indicates that both domain and range are the
- natural numbers. PJP now picks names for the input and output variables,
E: say x and y , respectively, and asks the user to describe the function
'; in terms »f these variables. The user replies with
- isqrt(x) - mex y such that y < square root(x);
" PUP first considers whether or not the condition y < square__r:)ot(x)
- is directly testable given x and y , i.e., whether PUP already has a
- program which can do it. Knowledge of the < relation says that the 3
- test can be done if and only if each side is computable. We trivially 1
:Q have the left side, given x end y . But PUP doesn't have an algorithm
1 to compute square root(x) , so we must look deeper for the right side.
52

T ;
L.

f [
|)

—
o

Sty
Woriqiotes, §

o

=

Knowledge of inequalities says to fix this up by finding an inverse
function of square root , say i , and by replacing the old inequality

by 1i(y) <x . A warning note says that such an inverse must be computable
(and in addition bhoth the inverse and the original function must be
monotone) ; otherwise, we're no better off than before. The main fact

about square root is that its inverse is achieved by squaring. Both

the square root and square functions have tags indicating monotonicity.
Also, square is known to be computable, so the problem statement is now

reformulated as
isort(x) - max y such that square(y) < x;

The second problem is whether an algorithm is already known which
computes the maximum element in the range of a given predicate. nancwledge
about m&x Includes only 1 algorithm: start by choosing the upper bound
of the range and then iterate, decrementing the candidate each time, until
the predicate is satisfied. KXnowledge of the natural numbers says that an
upper bound does not exist, so this straightforward method won't work.
Fortunately, max knows a transformation of itself when the predicate
is monotone and the range is a segment of the integers:
max y such that p(y) Ybecomes miny such that —p(y + 1) . Both
the conditions are verified in our case, so the change is tentatively

made, and the problem statement becomes
isqrt(x) ~min y such that —(square(y + 1) < x);

(Notice that PUP implicitly assumes that the negation of a computable

predicate is computable. This should probably be made explicit.) Knowledpe

32

- s e e :v—éﬂ}sﬁgi:ﬁﬁ“ﬂm@g?}f%

N

¢f negation allows the replacement of —< by > at this point, and

we get

isqrt(x) ~ min y such that square(y + 1) > x;

Now algorithms for computing min are examined. The only one says
to start at the lower bound of the range and repeatedly increment unti®
the predicate is satisfied. Xnowledge of natural numbers informs us that

a lower bound is 0O . PUP converts this to the final code:

isqrt(x) -~ iSqrtl(O, x);

isqrtl(y, x) ~ if square(y + 1) > x then y else isartl(y + 1, %)

DUP enters the program in its records, recalls the original request
for isqrt{82) , and runs the new program on it.

Notice the flavor of FUP's operation: locating relevant information,
vhich either provides some of the final code or points to more information
which is needed. It is the structuring of this knowledge which beatsz the

combinatorial explosion of searching for relevant facts.

L.5 Examples Program

This program, called EXAMPLE, infers recursive LISP functions from
single example input-output pairs. The program was written in INTERLISP
by Shaw and later revised by William Swartoui. The inductive inference
of functions from example I/0 pairs has also been explored by

J. C. R. Licklider [1] and Hardy [14].

e

;.4——.& T L e st H I T

As a typical problem solved by EXAMPLE, given the example I/0 pair

input output
(ABCD) —5 (DDCC BBAA)

it synthesizes thc¢ "reverse and double" function

£(x) ~ if null(x) then nil else
append(£(cdr(x)), list(car(x), car(x)));

EXAMPLE can infer a class of functions which can be approximately
characterized as simple list-to-list transformations. A somewhat more
precise characterization of the class is that each function recurs along
an input list (or lists) and produces some part of the output (possibly
empty) for each step of the recursion. These pieces of the output are
assembled into the output list without any reordering (with the possible
exception of completely reversing the output). At each step of the
recursion, a similar recursive subfunction can be used to produce that
step's portion of the output. There can be several input arguments, and
the function written can be recursive in any number of arguments.

As an example, consider the I/0 pair

input outmt

(ABCD) —> ((A B)(A C)(A D)(B C)(B D)(C D))
1 2 3

The output is produced in ? steps as indicuted. A recursive subfunction

produces the sublists (1, 2, and 3 shown above) in successive steps, and

e
i

8
“

P

ol 5 Sl gt |
_— s

e o St WL . 2

[T T T

ouanend

M!

sorniy

Birmmneily

3

- b

I
1

the main function appends them together. EXAMPLE can synthesize this
function and variations, such as having the output reversed or the same
output but with each sublist reversed.

The program works as follows. Consider the synthesis of the function
discussed above. Call it f . First EXAMPLE d>cides how much of the
output is produced in the firs. step of the recurtion (referred to as the

recursive head). Thus, in {he example above, it decides that the first

sublist (A B)(A C)(A D) is produced in the first step and is the recursive
head. (Th heuristic by which it decides this is interesting and is
discussed later.) Next it sets up the subproblem of synthesizing the

code that produces the head. This can be thought of as specifying a
subfunction, although in-line code may be used if no recursion is necessary.
In cur example a recursive subfunction, call it fl s is required. First
the arguments of fl are selected. In this case EXAMPLE chooses 2
arguments for fl » car of the input, A, and cdr of the input,

(BC D) . Obviously £, Just lists car of the input with each of the
elements of the cdr . After the inputs are set up, the subfunction is
written in the same manner as the main function, by a recursive call to
EXAMPLE. Returning to the synthesis of the main function, there are 3
remaining steps: (1) the terminating conditions are selected;

(2) the results trom each recursive step are joined properly, using

either cons or append ; and (%) the recursive call of the main
function is formed. The recursive call can be on the c¢dr , cddr , -

cdddr , etc. For example, in (ABC D E F) —» (AC E) the recursive

v |

call is on the cddr of the input.

AN.]
ol

o oo+ e

e,

The program written for (A B C D) = ((A B)(A C)(A D)(B C)(B D)(C D))

is

£(x) « if null(x) then nil else
if null(edr(x)) then nil else

append (£, (car(x), cdr(x)), f(edr(x)));

fl(y, z) «~ if null(z) then nil else
cons(1ist(y, car(z)), £;(y, edr(z)));

EXAMPLE is fairly complex, but we will describe one interesting part,
namely the heuristic that decides where to break the output 1list into the
recursive head and the rest. The output list is scanned left to right (and
possibly right to left if necessary), looking for a simple progression.
When a large change is encountered; this point is proposed as the break.
In our example, (A BC D) —= ((A B)(AC)(AD)(BC)(BD)(C D)) , the
pattern (A next_input) » where next input signifies the successive
elements in the input past A (i.e., B, C , and D), is discovered
to match the first 3 elements of the output but not (B C) , so the break
occurs before (B C) . This heuristic, along with many others, such as
determining when to write a subfunction and the number of arguments for
a subfunction, works fairly well.

The following examples are ones for which a reasonable program was

automatically generated. Some l-input examples are

input output
(ABC D) —— (DC BA)
(A BC) —> (AABBCC)
(ABCD) —— (DDCCBBAA)
(ABCDEF) — (ACE)
({ABCDETF) — (EC 4
(ABCDEF) —> (BDF)
(A BC D) — ((A)(B)(C)(M))
(ABCD) — ((aB)(aC)(AD)(BC)(BD)(C D))
(ABCD) —> (ABCDBCDCDD)
(ABCD) —— (DCBADCBDCD)
(ABCDEF) — (BADC FE)

37

#oerrds oy,

i 1

é
3

orcsss BN |

gr— —

L

-

-

B

e
L=

o B

Whew i
| T

W e xl

s+ 13

i

4 D ey - i

Some 2-input exampies are

input 1 input 2 output

N (ABCD) -~ ((FN A)(FN B)(FN C)(Fv D)
(ABC) (DEF) — (ADBECTF)

(ABC) (D E) — (ADBDCDAEBECE
(ABC) (D E) —_ ((A D)(A E}3B D)(B E)(C D) E)
(ABC) MEF) — ((AD)(®E)(C)

The limitations of the system are

(1) oniy the positiun of an element, and not itc identity,
is considered in deciding what to do with it. Thus 2
revevrse program can ve written, but a scrl cannct.

(2) On the input, only top-isvel list recursions, as opposed
tc tree recursions, ara attemptad. Thus the flatten
function [e2.g., (AB(C (DE) F) G) —~>» (ABCDEFG)]
is not possibie.

(3) The urganization of the program makes extension intd new
areas reasonabiy difficvlt. We plan bo reorgunize the
program and to adé cleverer, domain-specific facts oo
inerease its power.

L.£ gynthesis of large Inductive-inference Prograns

Cur next system, PUP5 by Lenabt, represents an attempt at the synthesis
of larger, more domain-specific programs. The system was designed to
write concept-formation propgrams, 2 class of prograns which inductively
infer the definition of & concept from a number of instences of that
concept [18]. The original target program to be synthesized
semi-automatically was SPOT, a small version of Winston's concept-formation
program [34] without its fancy graph=matching algorithm, written by
Peter Gadwa at Stanford University. SPOT was specifically designed to

be 2 simple (5-page), yet still interesting program. During the course

»8

J
ki
‘
L WA G e O ot
- - st .

(AR AN AR D8 T 5 e
e .v\ *, ; N R - “~‘ - S

Lo . Eistn
h ey NEa g

R

'» e
;o

)

St |

et
o+

I N A

4 e g

of the design of PUPS, the target program evolved into a somewhat
different progranm.

HPS is still only an experimental vehicle, but it has proved
moderately successful. It has indeed written a concept-formation program
similar to the intended one, although augmented by self-documentation.
PUP5 is being revised to write a wider class of inductive-inference
programs. The next target program is a simple grammatical-inference
program, upon which work should be completed shortly.

Although the system is written entirely in INTERLISP, many popular
AIl-language features [5] (e.g., pattern matching, assertions, goal
direction, apply teams, backtracking, special data types, demons, etc.)
were hand coded expressly for this system. The entire 100 pages of code
is organized as an interacting community of small units, called beings.
Although complex, the structure of each being is the same: a set of answers
to about 30 fixed questions. These questions, called the being parts,
represent "everything you always wanted to know about a small program".
Neither the exact set chosen nor the number 30 is very important; the
approximate size of the set is relevant to autcmatic programming, however.
Each being part is itself a little program which knmows what the 30 questions
are and which may ask any being any question it wants to. Since some
beings must write target code, we choose to have each being x write all
code similar to x . For example, the sort being contains a costly
"big switch" hooked to various sorting algorithms, but the code it writes
in any specific instance will be a tajlor-written implementation of a
particular sort algorithm.

Although PUPS insists on doing structured programming (hence uses

something like macro expansion), its control structure employs feed forward,

39

o v

f'eedback, backtracking, and a contextual assertion base. One bit of

inherent philosophy is that the system should defer making all decisions

as long as possible. We hope that by this deferral, along with careful

record keeping, we can eliminate most of the carelessness "bugs" that

typically arise in humans as a result of brain-hardware limitations. This
is in contrast to earlier versions of FUP [see Section k.4t], which viewed
debugging as the predominant part of programming. Thus, PUPS rarely
believes it is finished if in faet it has overlooked some details.

We now present (most of) the current parts of a being:

name description

identity how the being is referenced in Znglish
sentences

arguments which arguments are required and which
are optional

argument_check predicate which examines each argument

for suitability
evaluate arguments which arguments of the being and in the
code generated by the teing should

be evaluated

what brief summary of what the being does

why Justification for the being's existence:
vwhy it is called

how summary of the method(s) used by the
being to do its thing

effects posteonditions which will be true after
calling the being

when factors and weights telling how apropos
the being is right now

meta_code body of the code, but with uninstantiated
subparts

comments aid to filling in the mcta code

requisites what must be actively satisfied just

before (prerequisites), during
(corequisites), and just after
(postrequisites) the being is

executed

demons which demons should be enabled during
the being's execution

affects which other bein;;s might be called by
this being

ko

L R e [v
ull

o Ay, A A A
Ml

g

LU

IR R 730

[I

N T,

| T

i

r

name description
complexity vector describing such features as

recursiveness, overall cost,
chance of failing, transparency
to user, etc.

specializations what must be known to write a streamlined
version of this being

alternatives equivalent beings in case this one
doesn't work

generalizations more general beings in case none of the
alternative beings works

predicate what type of velues the being returns

data_structure if being is a data structure, how it

is initialized and accessed, how
elements are inserted and deleted

encodable description of the flow of control in
writing a specialized new bheing
inhibit_current_ enable/inhibit mechanism for demons
demons
form changing where in the being tree this being can

directly return to

Although each being has about 30 answers, each of which might contain
several facts, only about 10 facts from any given being are actually
employed during the course of the program-writing dialog. A typical
programming being is obtain _usable information . Its when being part
says that czlling this being is generally undesirable, but may ve the
only reasonable course to follow if there exists new information which is
not directly usable. Its how being part says to choose (creating a
non-deterministic backtrack point) from among these: translate, get
totally new raw information, extract a small subset of existing raw
information to concentrate upon, or analyze ‘the implicatiions of a small
set of existing raw information. A typical domain-specific being is
partition & domain . It specializations being part says to find out
whether the partition is partial or total, whether it is weak or strong,

and whether it is built by repeatedly accepting (clement, class name)

b1

e ol

pairs and/or accepting an element (then guessing and verifying its

class name) and/or accepting a class name (then guessing and verifying
its element(s)).
The dialog involved in a FUPS run is carried on in a miniscule
subset of English. Since it encompasses precisely the sentences which
the user wants to say, the dialog gives the illusion of belng unconstrained.
However, the term "the user" is not generic as there has only been 1 user

so far. The interaction system works by each being recognizing and

T AR

processing phrases referring to it. The dialog for synthesizing the
concept-formation program takes several hours of console time. Much

of the interaction is unnecessary: PUP5 asks the user to name things

which are never referenced again. This annoyance is being worked on. :
A promising sign of programming-knowledge convergence is that out of

67 programming beings 50 are used by PUPS during the course of writing

both of the target programs (concept formation and grammatical inference).

Future plans for PUP5 work include studying the various types of knowledge

Mot .

needed for programming, inductive inference, and specific target programs.
This will (hopefully) be done by extending PUP5 to handle more and bigger

tasks.

k.7 Sorting
During the past year, Green and Barstow have attempted to isolate

A L o A

and codify those '"facts" of programming knowledge which are necessary for
a system which can understand and write simple iterative sorting programs.

To keep the working domain small, such techniques as recursion and exchange

S Sl bwed e Peoed Beed Bwd Dol el Bed Dd Dk DN B G0 BN @B

L2

i W 2 ™ ") f— i Ll . BRD
. ™ . Lo Lo § i ’ i]
ol pod e Do OGN0 O BN BN ED B NN BN O O el NS s e
R

»

sorting (e.g., bubble sort) and such fast algorithms as quicksort [16)
and heapsort (8, 33] were explicitly excluded from consideration. 1In the
course of this attempt, it became apparent that many concepts were
involved and needed to be analyzed. The present set of facts is a list
of 100 rules which deal with sorting and permutations, generators for
explicitly given sets, set constructors, and several types of generate-
and-test methods. The rules allow for either array or list representations
of sets. There are at present no rules regarding efficiency considerations
or formal verification of correctness. This we consider a shortcoming,

and Elaine Kant has recently begun studying the addition of rules for
optimization.

One interesting aspect of our list of rules is that it covers a wide
range of levels. As an example of the range covered, there are rules
dealing with the choice between selection and insertion sorts, with
state-saving schemata for generators, with the choice of variable names,
and with the addition of elements to the froni of a list. One initial
goal of our work was to have each rule be relatively simple and explicit;
we feel that we have been moderately successful in this regard. Thus,
these rules provide a knowledge base for a program-writing system, and it
is the interaction of these rules which provides the foundation for the
system's "understanding" of sort programs.

The rules have been -°ganized in a goal/subgoal fashion, with the
capabilities of disjunctive and sequential subgoals and subgoaling by
cases. A preliminary implementation of a system based upon these rules
has been completed. Each rule has been written as an INTERLISP function.
The contrel system consists of several other functions which describe

the efforts of the system as it writes a program, ask for choices at

[N ———

A 1

ol

e b

(R-rule junctures, and provide limited additional explanatory information
on request (e.g., a why function to exp ain the purpose of a section of
the final program). The traces tend to be overly verbose, but confirm
our belief that the rules can form the basis of an understanding system.

It should be emphasized that this system was primarily a "quick and
dirty" effort, intended as a device for testing and refining rules, rather
than as a program-writing system. One test of the rules is, of course,
adequacy, and the system has successfully written 3 substantially different
programs: a reverse program, & selection sort, and an insertion sort.
Although not all of the variations have been completed to date, we expect
that with perhups 20 additional rules our system should be capable of
generating a few dozen distinct (although in many cases similar) programs.
The programs produced are generally about 1 page in length (using the
INTERLISP prettyprint function as a standard of measurement).

We feel that this line of research has been fruitful and plan to
continue it in the future. It is our expectation that such a structuring
of knowledge will make possible the incremental addition of rules for
other aspects of low-level programs and that any additional rules will

use many of the present rules as subgoals.

Lk

il

]

(1]

(3]

A7)

(€]

(7]

(81

(10]

Exk S ” it R N ™ T e) SHEEENCY - R Ty

BIBLIOGRATHY

"Automatic Composition of Functions from Modules", Project MAC
Progress Report X: July 1J72 -July 1973, Section III.E.1,
Project MAC, llassachusetts Institute of Technolegy, Cambridge,
Massachusetts, pages 151-156.

Biermann, A. W., Baum, R., Krishnaswamy, R., and Petry, F. E.,
Automatic Irogram Synthcsis Reports, O0SU-CISRC-TR-T73-6, Department
of Computer and Information Science, The Ohic State University,
Columbus, Ohio, October 1973.

Biermann, A. W., and Feldman, J. A., "On the Synthesis of Finite-
state Machines from Samples of Their Behavior”, IEEE Transactions
on Computers, Volume C~21, Number ¢, June 1972, pages 592-597
(also On the Synthesis of Finite-state Acceptors, Memo AIM-11bh,
Artificial Intelligence Laboratory, Computer Science Department,
Stanford University, Stanford, California, April 1970).

Blum, L., and Blum, M.. "Inductive Tnference: A Recursion Theoretic
Approach", Inflormation and Control, +o appear (also Memorandum
FRL-M386, Elzctronics Rccearch Laboratory, College of Engineering,
University of California, Berkeley, california, 15 March 1973).

Bobrow, Daniel G., and Raphael, Bertram, "New Programming Languages

for AT Research", Computing Surveys, Vol'me 6, Number *, September 197k
(invited tutorial lecture, Third International Joint Counference on
Artificial Intelligence, Stanford University, Stanford, California,
20-23 August 1973; also Report CSL-7:-2; Xerox Pslo Alto Research
Center, Palo Alto, California, 20 August 1973; also Technical Note 82,
Artificial Intelligence Center, Stanford Research Institute, Menlo Park,
California, August 1977).

Dahl, 0.~J., Dijkstra, I'. W., and Hoare, C. A. R., Structured
Programming, Academic Frecs, Inc., Kaw Yorz, New York, 1972.

Feldman, J. A., and Shields, P. C., Total Complexity and the Inference
of Best Programs, Memo AIM-159, Report STAN-CS-T2-253, Artificial
Intelligence laboratory, Computer Science Departm.nt, Stanford
University, Stanford, California, April 1a972.

Floyd, Robert ¥., "Algorithm 245: TREESORT:", Communications of
the ACM, Volume 7, Number 12, December 196k, page 70L.

Floyd, Robert ¥W., "Assicning Meanings to Proprams", in Schwartz, J. T.,
editor, Mathematical Asvects of Computer £~ience, Proceedings of
Symposisa in Applied Mothoematics, /clume :), American Mathematical
Society, Providence, Rhode Tsland, 1947, pases 10-32,

Floyd, Robert W., “Toward Interactive Design of Correct Programs™,
in Freiman, . V., edit»r. Foundati-ns and Syst=ms, Information
Procescingt 71: Procecedin ¢ of IFiP Congress T1l, Volume 1,
North-Holland Publishing ©~mpany, Misterdam, The Netherlands,
1972, parer 7-10 {also Memo AIM-15-, Report STAN-S-T1-235,
Artificial Intellisence Laboratory, Computer Science Department,
Stanford Univercity, Slanford, Calii'srnia, Cepbember 1971).

‘5

s
E
2
3
2
3

-

{11] Fusacka, Akira,.and Wsldinger, Richard, "Program Writing using
Sequences", Artifiicial Intelligence Center, Svant'ord Rescarch
Institute, Menlo Park, California, January 1G7h.

[1z] Gold, E. Mark, "Language Identification in the Limit", Informat.ion
and Control, Volume 10, Humber $, May 1967, pages Wh7-47L, -

[13] Green, Claude Cordell, The Application of ‘Theorem Proving to
Question-wnswering Systems, Ph.D. thesis, Electrical Engincering
Department, Memo AIM-96, Report STAN-CS-69-1383, Ariificial
Invelligence lnboratory, Computer Science Depariment, Stanford
University, Stanford, California, June 1969.

(4] Hardy, Steven, "Aatomatic Induction of LISP Functions", AISB Swummer
Conference, Lniversity ot Sussex, Brighton, England, July 197k,
pages 50-6%

[15] Hoare, C. A. R., "An Axiomatic Basis for Computer Programming",
Communications of the ACM, Volume 12, Number 10, October 19£9,
pages 576-580, 585.

[16] Hoare, C. A. R., "Quicksort", The Computer Journal, Volume 5, 19¢2,
pages 10-15.

(17] Horning, James Jay, A Study of Grammatical Infercnce, Ph.D. thesis,
Memo AIM-98, Report STAN-CS-69-139, Artificial Intelligence Icboratory,
Computer Science Depariment, Stanford University, Stanford, california,
August 1969.

(18) Hunt, Earl B., Concept Learning: An Information Frocessing Froblom,
John Wiley and Sons, Inc., New York, New York, 1962.

(19] Knuth, Donald E., The Art of Compuber Progrumming, Volumes 1-3,
Addison-Wesley Publishing Company, Inc., Rcading, Massachusetts, 1973,
1969, 1973.

[0] Knuth, Donald E., Sorting and Searching, The Art of Computer

Programming, Volume >, Addison-Wesley Publist ing Company, Inc.,
Reading, l'acsachusetts, 1973, page 75.

[P1] ranna, Z., "Auboralic Do cearaning, invited tutorial lectwre,
Third International Joint Confercnce on Arlificial Tntelligence,
Stanford University, Stanford, California, 20-P3 Auwjust 1975

[#22] IManna, Zohar, and Waldinger, Richard, "Knowledge and Reasoning in
Frogram Synthesis", in preparation.

(23] McCarthy, J., "Powards a Mathemzbical Geience of Computation”, in
Popplewell, Cicely M., editor, infoaraiion Proceesing 10672:

R ; 1
Proceedings of [FIP Comrress (2, o0 rth-jiolland Dublishing Corgveny,) 3
Amsterdam, The Netherlands, 1907, :njes 21-78. :

L6

T TR

TP

bl

{f
1
1

S n Ky M o A, Y IS TIPS ¢

[Pyt

{2k]

[e5]

{26]

(27}

(29]

[30]

(31]

{32]

(54]

Newell, Allen, "Heuristic Programsings: Tll-structured Problems”,

in Aronofsky, Julius S., editor, felutionship between Operations
Research and the Computer, irogress in Uperabions Research, Volume .,
Job: Wiley and Sons, inc., New York, flew York, 100, pages 3C1l-hlh.

Percson, Staffan, Some Sequence Extrapolating Programs: A Study
of Representation and Modeling in inguirving 3ystems, Ph.D. thesis,
School of Business Administration, 'mivercily of California,
Berkeley, California, Memo AIM-lt, Report CPAN-CS-06-50, Artificial
Intelligence laboratory, Computer Reience Department, Stanford
University, Stanford, California, 2(Seplember 196(.

Reboh, Rene. and Sacerdoti, Earl, A Preliminary QLISP Manual,
Technical Wote 81, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, August 1973.

Rulifson, Johns ¥., Derksen, Jan A., and Waldinger, Richard 7.,
QAk: A Procedural Calculus for Trtuitive Reasoning, Technical
Note T3, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, Movember 1972,

Simon, Herbert A., "Experiments with a Heuristic Compiler”,
Journal of the Assaciation for Comnputing Mechinery, Volume 10,
Number L, Cctober 1953, puges 495-506.

Simon, Herbert A., and Yot ky, Kenneth, "Human Acquisition of
Concepts for Sequential luvterns”, Psychological Review, Volume 7O,
Number 6, November 1962, pages 53L-5LG.

Smith, David Canfield, MLISP, Hemo AIM-155, Report STAN-CS-70-179,
Artificial Intelliigence Laboratoxry, Computer Science Department,
Stanford University, Stanford, Califeornia, October 1970.

Teitelman, Warren, INTERLISP Reference Manual, Xerox Palo Alto
Research Center, Palo Alto, California, 1GTh.

Waldinger, Richard J., Constructing Programs Automatically using
Theorem Proving, Ph.D. thrzis, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, May 1969.

Williams, J. W. J., "Alrorithm 272: URAFCCRTY, Communications of
the ACM, Volume 7, Number ¢, June 1Wh, paces ZW7-Zh3.

Winston, Patrick H., Learnins Struchural Descriptions from Examples,
Ph.D. thesis, Department of ®lectricu. .ui,-loering, TR-70, Project
MAC, TR-231, Artificial Intelligence Tab--~4oxy, Massachusetts
Tnstitute of Technology, cambridie, iwcone o, elbs, September 1970.

